top of page

Publications

[1]      Y. Leviatan and A. Boag, “Analysis of Electromagnetic Scattering from Dielectric Cylinders Using a Multifilament Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-35, pp. 1119-1127, October 1987.

[2]      Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Acoustic Scattering from Fluid Cylinder Using a Multifilament Source Model,”  Journal of the Acoustical Society of America, vol. 83, pp. 1-8, January 1988.

[3]      Y. Leviatan, Am. Boag and Al. Boag, “Analysis of TE Scattering from Dielectric Cylinders Using a Multifilament Magnetic Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-36, pp. 1026-1031, July 1988.

[4]      Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Two-Dimensional Electromagnetic Scattering from a Periodic Grating of Cylinders Using a Hybrid Current Model,”  Radio Science, vol. 23, no. 4, pp. 612-624, July-August 1988.

[5]      Y. Leviatan, Am. Boag and Al. Boag, “Analysis of Electromagnetic Scattering from Dielectrically Coated Conducting Cylinders Using a Multifilament Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-36, pp. 1602-1607, November 1988.

[6]      Y. Leviatan, Am. Boag, and Al. Boag, “Generalized Formulations for Electromagnetic Scattering from Perfectly Conducting and Homogeneous Material Bodies-Theory and Numerical Solution,” IEEE Trans. Antennas and Propagation, vol. AP-36, pp. 1722-1734, December 1988.

[7]      Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Acoustic Scattering from Fluid Bodies Using a Multipoint Source Model,”  IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. UFFC-36, pp. 119-128, January 1989.

[8]      Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Diffraction from Echellete Gratings Using a Strip Current Model,”  Journal of the Optical Society of America A, vol. 6, pp. 543-549, April 1989.

[9]      Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Two-dimensional Acoustic Scattering from Periodic Structures Using a Hybrid Source Model,”  Journal of the Acoustical Society of America, vol. 86, pp. 387-394, July 1989.

[10]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Two-Dimensional Electromagnetic Scattering from Non-Planar Periodic Surfaces Using a Strip Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-37, pp. 1437-1446, November 1989.

[11]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Diffraction from Doubly Periodic Arrays of Perfectly Conducting Bodies Using a Patch-Current Model,”  Journal of the Optical Society of America A, vol. 7, pp. 1712-1718, September 1990.

[12]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Electromagnetic Scattering from Doubly Periodic Arrays of Penetrable Bodies Using a Patch-Dipole Current Model,”  Radio Science, vol. 26, no. 2, pp. 603-610, March-April 1991.

[13]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Electromagnetic Scattering from Linear Periodic Arrays of Perfectly Conducting Bodies Using a Cylindrical Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-39, pp. 1332-1337, September 1991.

[14]    Y. Leviatan, Am. Boag, and Al. Boag, “Analysis of Electromagnetic Scattering Using a Current Model Method,”  Computer Physics Communications - Thematic Issue on Computational Electromagnetics, vol. 68, pp. 331-345, 1991.

[15]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Three-Dimensional Acoustic Scattering from Doubly-Periodic Structures Using a Source-Model,”  Journal of the Acoustical Society of America, vol. 91, pp. 572-580, February 1992.

[16]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Electromagnetic Scattering from Linear Periodic Arrays of Penetrable Bodies Using a Cylindrical Current Model,”  Journal of Electromagnetic Waves and Applications, vol. 7, pp. 423-441, March 1993.

[17]    Al. Boag, Y. Leviatan, and Am. Boag, “Analysis and Optimization of Waveguide Multiapplicator Hyperthermia Systems,”  IEEE Trans. Biomedical Engineering, vol. 40, pp. 946-952, September 1993.

[18]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Electromagnetic Scattering from Doubly Periodic Nonplanar Surfaces Using a Patch Current Model,”  IEEE Trans. Antennas and Propagation, vol. AP-41, pp. 732-738, June 1993.

[19]    Am. Boag, Y. Leviatan, and Al. Boag, “Analysis of Scattering from Cylinders with a Periodically Corrugated Periphery Using a Current-Model Technique,”  IEEE Trans. Antennas and Propagation, vol. AP-41, pp. 1265-1272, September 1993.

[20]    Am. Boag, Y. Leviatan, and Al. Boag, “On the use of SVD - Improved Point Matching in the Current-Model Method,”  IEEE Trans. Antennas and Propagation, vol. AP-41, pp. 926-933, July 1993.

[21]    B. Pomeraniec, Y. Leviatan, and A. Boag, “Analysis of the 5:1 Dipole Benchmark Case Using the Current-Model Method with an SVD-Improved Point Matching Technique,”  Journal of Electromagnetic Waves and Applications, vol. 7, pp. 1577-1593, Dec. 1993.

[22]    A. Boag and R. Mittra, “Complex Multipole Beam Approach to Electromagnetic Scattering Problems,”  IEEE Trans. Antennas and Propagation, vol. AP-42, pp. 366-372, March 1994.

[23]    A. Boag and R. Mittra, “Complex Multipole Beam Approach to 3D Electromagnetic Scattering Problems,”  Journal of the Optical Society of America A, vol. 11, pp. 1505-1512, April 1994.

[24]    A. Boag and R. Mittra, “A Numerical Absorbing Boundary Condition for Finite Difference and Finite Element Analysis of Open Periodic Structures,”  IEEE Trans. Microwave Theory Tech., vol. 43, pp. 150-154, January 1995.

[25]    Am. Boag, Al. Boag, R. Mittra, and Y. Leviatan, “A Numerical Absorbing Boundary Condition for Finite Difference and Finite Element Analysis of Open Structures,”  Microwave and Optical Technology Letters, vol. 7, no. 9, pp. 395-398, June 20 1994.

[26]    Am. Boag, Al. Boag, and R. Mittra, “A Numerical Absorbing Boundary Condition for Edge-Based Finite Element Analysis,”  Microwave and Optical Technology Letters, vol. 7, no. 16, pp. 733-737, November 1994.

[27]    E. Michielssen and A. Boag, “Multilevel Evaluation of Electromagnetic Fields for the Rapid Solution of Scattering Problems,”  Microwave and Optical Technology Letters, vol. 7, no. 17, pp. 790-795, December 5 1994.

[28]    A. Boag, E. Michielssen, and R. Mittra, “Hybrid Multipole-Beam Approach to Electromagnetic Scattering Problems,”  Applied Computational Electromagnetics Society Journal, vol. 9, pp. 7-17, No. 3, 1994.

[29]    Al. Boag, Am. Boag, E. Michielssen, and R. Mittra, “Design of Electrically Loaded Wire Antennas Using Genetic Algorithms,”  IEEE Trans. Antennas and Propagation, vol. AP-44, pp. 687-695, May 1996.

[30]    E. Michielssen and A. Boag, “A Multilevel Matrix Decomposition Algorithm for Analyzing Scattering from Large Structures,”  IEEE Trans. Antennas and Propagation, vol. AP-44, pp. 1086-1093, August 1996.

[31]    A. Boag and R. Mittra, “A Numerical Absorbing Boundary Condition for 3D Edge-Based Finite Element Analysis of Very Low-Frequency Fields,”  Microwave and Optical Technology Letters, vol. 9, pp. 22-27, May 1995.

[32]    E. Michielssen, A. Boag, and W. Chew, “Scattering from Elongated Objects: Direct Solution in O(Nlog2N) Operations,”  IEE Proc. Microwaves and Antennas, vol. 143, no. 4, pp. 277-283, August 1996.

[33]    Am. Boag, Al. Boag, and E. Michielssen, “Complex Multipole Beam Approach to Acoustic Scattering Problems,”  Journal of the Acoustical Society of America, vol. 102, pp. 1319-1325, September 1997.

[34]    A. Boag, Y. Bresler, and E. Michielssen, “A Multilevel Domain Decomposition Algorithm for Fast Re-projection of Tomographic Images,"  IEEE Trans. Image Proc., vol. 9, no. 9, pp. 1573-1582, September 2000.

[35]    A. Boag, “A Fast Multilevel Domain Decomposition Algorithm for Radar Imaging,”  IEEE Trans. Antennas and Propagation, vol. 49, no. 4, pp. 666-671, April 2001.

[36]    J. Pasvolsky, E. Heyman, R. Kastner, and A. Boag, “Electromagnetic Analysis of an Antenna Embedded in a Composite Environment,”  IEEE Trans. Antennas and Propagation, vol. 49, no. 5, pp. 681-687, May 2001.

[37]    A. Boag and B. Z. Steinberg, “Narrow Band Micro-Cavity Waveguides in Photonic Crystals”, Journal of the Optical Society of America A, vol. 18, no. 11, pp. 2799-2805, Nov. 2001.

[38]    O. Livne, A. Brandt, and A. Boag, “Multigrid Analysis of Scattering by Large Planar Structures,” Microwave and Optical Technology Letters, vol. 32, no. 6, pp. 454-458, March 20, 2002.

[39]    A. Boag and C. Letrou, “Fast Radiation Pattern Evaluation for Lens and Reflector Antennas,”  IEEE Trans. Antennas and Propagation, vol. 51, no. 5, pp. 1063-1068, May 2003.

[40]    D. Lugara, C. Letrou, A. Shlivinski, E. Heyman, and A. Boag, “Frame-based Gaussian beam summation method: Theory and applications,”  Radio Science, vol. 38, no. 2, 8026, 26 April 2003, doi: 10.1029/2001RS002593.

[41]   A. Boag, “A Fast Iterative Physical Optics (FIPO) Algorithm Based on Non-Uniform Polar Grid Interpolation,”  Microwave and Optical Technology Letters, vol. 35, no. 3, pp. 240-244, Nov. 5, 2002.

[42]    D. Lugara, A. Boag, and C. Letrou, “Gaussian beam tracking through curved interface: comparison with a Method of Moments,”  IEE Proc. Microwaves and Antennas, vol. 150, no. 1, pp. 49-55, Feb. 2003.

[43]    B. Z. Steinberg, A. Boag, and R. Licitsin, “Sensitivity Analysis of Narrow-Band Photonic Crystal Filters and Waveguides with Structural Variations and Inaccuracies,”  Journal of the Optical Society of America A, vol. 20, no. 1, pp. 138-146, Jan. 2003.

[44]    A. Boag, E. Michielssen, and A. Brandt, “Non-uniform Polar Grid Algorithm for Fast Field Evaluation,”  IEEE Antennas and Wireless Propagation Letters, vol. 1, no. 7, pp. 142-145, 2002.

[45]    A. Boag, “A Fast Physical Optics (FPO) Algorithm for High Frequency Scattering,”  IEEE Trans. Antennas and Propagation, vol. 52, no. 1, pp. 197-204, January 2004.

[46]    A. Shlivinski, E. Heyman, A. Boag, and C. Letrou, “A Phase-Space Beam Summation Formulation for Ultra Wideband Radiation,”  IEEE Trans. Antennas and Propagation, vol. 52, no. 8, pp. 2042- 2056, August 2004.

[47]    A. Boag and E. Michielssen, “A Fast Physical Optics (FPO) Algorithm for Double-Bounce Scattering,”  IEEE Trans. Antennas and Propagation, vol. 52, no. 1, pp. 205-212, January 2004.

[48]    A. Boag, U. Shemer, and R. Kastner, “Hybrid Absorbing Boundary Conditions Based on Fast Non-uniform Grid Integration for Non-Convex Scatterers,”  Microwave and Optical Technology Letters, vol. 43, no. 2, pp. 102-106, October 20 2004.

[49]    A. Shlivinski, E. Heyman, and A. Boag, “A Phase-Space Beam Summation Formulation for Ultra Wideband Radiation.  Part II - A Multi-Band Scheme,”  IEEE Trans. Antennas and Propagation, vol. 53, no. 3, pp. 948-957, March 2005.

[50]    A. Boag and C. Letrou, “Multilevel Fast Physical Optics Algorithm for Radiation from Non-planar Apertures,”  IEEE Trans. Antennas and Propagation, vol. 53, no. 6, pp. 2064-2072, June 2005.

[51]    O. Levy, B. Z. Steinberg, M. Nathan, and A. Boag, “Ultra-sensitive displacement sensing using photonic crystal waveguides,”  Applied Physics Letters, vol. 86, article 104102 (3 pages), March 7, 2005.  Also in Virtual Journal of Nanoscale Science & Technology, vol. 11, no 10, March 14, 2005.

[52]    A. Shlivinski, E. Heyman, and A. Boag, “A Pulsed Beam Summation Formulation for Short Pulse Radiation Based on Windowed Radon Transform (WRT) Frames,”  IEEE Trans. Antennas and Propagation, vol. 53, no. 9, pp. 3030-3048, September 2005.

[53]    A. Boag, U. Shemer, and R. Kastner, “Non-uniform Grid Accelerated Local-Global Boundary Condition (NG-LGBC) for Acoustic Scattering,”  Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 3608-3621, June 2006.

[54]    A. Agronin, M. Molotskii, Y. Rosenwaks, E. Strassburg, A. Boag, S. Mutchnik, and G. Rosenman, “Nanoscale piezoelectric coefficient measurements in ionic conducting ferroelectrics”,  J. Appl. Phys, vol. 97, 084312 (6 pages), 7 April 2005.

[55]    E. Strassburg, A. Boag, Y. Rosenwaks, “Reconstruction of Electrostatic Force Microscopy Images,”  Review of Scientific Instruments, vol.76, 083705 (5 pages), 28 July 2005.

[56]    A. Schwartsman, T. Glatzel_, E. Grunbaum, E. Strasburg, E. Lepkifker, A. Boag, Z. Barkay, M. Mazzer, K. Barnham, and Y. Rosenwaks, “Nanoscale Potential Distribution across Multi-Quantum Well Structures: Kelvin Probe and Secondary Electron Imaging,”  J. Appl. Phys., vol. 98, no. 8, 084310 (4 pages), Oct. 15, 2005.  Also in Virtual Journal of Nanoscale Science & Technology, vol. 12, no 19, November 7, 2005.

[57]    B. Z. Steinberg and A. Boag, “Propagation in Photonic Crystal Coupled Cavity Waveguides with Discontinuities in Optical Properties,”  Journal of the Optical Society of America B, vol. 23, no. 7, pp. 1442-1450, July 2006. Also in Virtual Journal of Nanoscale Science & Technology, vol. 14, no 2, July 11, 2006.

[58]    A. Boag, V. Lomakin, and E. Michielssen, “Non-Uniform Grid Time Domain (NGTD) Algorithm for Fast Evaluation of Transient Wave Fields,”  IEEE Trans. Antennas and Propagation, vol. 54, no. 7, pp. 1943-1951, July 2006.

[59]    B. Z. Steinberg, A. Boag, and O. Hershkoviz, “Substructuring approach to optimization of matching for photonic crystal waveguides,”  Microwave and Optical Technology Letters, vol. 48, no. 9, pp. 1866-1871, Sept. 2006.

[60]    A. Boag and B. Livshitz, “Adaptive Non-uniform Grid (NG) Algorithm for Fast Capacitance Extraction,”  IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 9, pp. 3565-3570, Sept. 2006.

[61]    B. Z. Steinberg, A. Shamir, and A. Boag, “Two Dimensional Green’s Function Theory for the Electrodynamics of Rotating Medium,”  Physical Review E, vol. 74, 016608 (9 pages), July 2006.  Also in Virtual Journal of Nanoscale Science & Technology, vol. 14, no. 5, July 31, 2006.

[62]    B. Z. Steinberg and A. Boag, “Splitting of Micro-Cavity Degenerate Modes in Rotating Photonic Crystals - The Miniature Optical Gyroscopes,”  Journal of the Optical Society of America B, vol. 24, no. 1, pp. 142-151, January 2007. Also in Virtual Journal of Nanoscale Science & Technology, vol. 15, no. 1, January 8, 2007.

[63]    O. Levy, B. Z. Steinberg, A. Boag, S. Krylov, and I. Goldfarb, “Mechanical Tuning of Two-Dimensional Photonic Crystal Cavity by Micro Electro Mechanical Flexures,”  Sensors and Actuators A: Physical, vol. 139, no. 1-2, pp. 47-52, 12 Sept. 2007.

[64]    P. Poullet and A. Boag, “Incremental Unknowns Preconditioning for Solving the Helmholtz Equation,”  Numerical Methods for Partial Differential Equations, vol. 23, no. 6, pp. 1396-1410, 2007.

[65]    B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation Induced Super Structure in Slow-Light Waveguides with Mode Degeneracy,”  Journal of the Optical Society of America B, vol. 24, no. 5, pp. 1216-1224, May 2007.

[66]    A. Shlivinski and A. Boag, “Fast Evaluation of the Radiation Patterns of True Time Delay Arrays with Beam Steering,”  IEEE Trans. Antennas and Propagation, vol. 55, no. 12, pp. 3421-3432, December 2007.

[67]    A. Shlivinski and A. Boag, “Multilevel Surface Decomposition Algorithm for Rapid Evaluation of Transient Near-Field to Far-Field Transforms,”  IEEE Trans. Antennas and Propagation, vol. 57, no. 1, pp. 188-195, January 2009.

[68]    B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, “NG Algorithm for Fast Calculation of magnetostatic interactions in micromagnetics,”  Journal of Applied Physics, vol. 105, no. 7, April 2009, 07D541 (2009); DOI:10.1063/1.3076048.

[69]    A. Neufeld, N. Landsberg, A. Boag, “Dielectric Inserts for Sensitivity and RF Magnetic Field Enhancement in NMR Volume Coils,”  Journal of Magnetic Resonance, vol. 200, no. 1 pp. 49-55, Sept. 2009.

[70]    Y. Brick and A. Boag, “Multilevel non-uniform grid algorithm for acceleration of integral equation based solvers for acoustic scattering,”  IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 1, pp. 262-273, Jan. 2010.

[71]    P. Poullet and A. Boag, “Equation-Based Interpolation and Incremental Unknowns for solving the Helmholtz equation,”  Applied Numerical Mathematics, vol. 60, pp. 1148–1156, 2010.

[72]    S. Shusterman, A. Raizman, A. Sher, A. Schwarzman, O. Azriel, A. Boag, Y. Rosenwaks, P. L. Galindo and Y. Paltiel, “Two-dimensional imaging of III-V quantum dots confinement potential”,  EPL A Letters Journal Exploring the Frontiers of Physics, vol. 88, 66003 (6 pages), Dec. 2009.

[73]    J. Meng, A. Boag, V. Lomakin, and E. Michielssen, “A Multilevel Cartesian Non-uniform Grid Time Domain Algorithm,”  J. Comp. Physics, vol. 229, no. 22, pp. 8430-8444, 1 Nov. 2010.

[74]    G. Elias, Th. Glatzel, E. Meyer, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy”,  Beilstein J. of Nanotechnology, vol. 2, pp. 252-260, 2011.

[75]    E. Koren, G. Elias, A. Boag, E. Hemesath, L. Lauhon, and Y. Rosenwaks, “Direct measurement of individual deep traps in single silicon nanowires,”  NanoLetters, vol. 11, pp. 183-187, May 2, 2011.

[76]    Z. Iluz and A. Boag, “Dual-Vivaldi wide band nano-antenna with high radiation efficiency over the infrared frequency band,”  Optics Letters, vol. 36, no 15, pp. 2773-2775, 2011.

[77]    E. Koren, N. Berkovitch, O. Azriel, A. Boag, Y. Rosenwaks, E. R. Hemesath, and L. J. Lauhon, “Direct measurement of nanowire Schottky junction depletion region,”  Applied Physics Letters, vol. 99, 223511, 2011.

[78]    Y. Brick and A. Boag, “Fast Direct Solution of 3-D Scattering Problems via Nonuniform Grid-Based Matrix Compression,”  IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 11, pp. 2405-2417, Nov. 2011.

[79]    C. Letrou, V. Khaikin, and A. Boag, “Analysis of the RATAN-600 radiotelescope antenna with a multilevel Physical Optics algorithm,”  Compte Rendus Physique, vol. 13, pp. 38-45, 2012, doi:10.1016/j.crhy.2011.10.011.

[80]    C. Letrou and A. Boag, “Generalized Multilevel Physical Optics (MLPO) for Comprehensive Analysis of Reflector Antennas,”  IEEE Trans. Antennas and Propagation, vol. 60, no. 2, pp. 1182-1186, February 2012.

[81]    Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Applied Physics Letters, vol. 100, 111113, 2012; http://dx.doi.org/10.1063/1.3694278.

[82]    N. Costa and A. Boag, “A Cartesian Non-uniform Grid Interpolation Method for Fast Field Evaluation on Elongated Domains,”  International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 25, pp. 645-655, 2012.

[83]    S. Li, R. Chang, A. Boag, and V. Lomakin, “Fast electromagnetic integral-equation solvers on Graphics Processing Units,”  IEEE Antennas and Propagation Magazine, vol. 54, no. 5, pp. 71-87, 2012.

[84]    A. Boag and V. Lomakin, “Generalized Equivalence Integral Equations,”  IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1568-1571, 2012, doi: 10.1109/LAWP.2012.2236294.

[85]    A. Shemer, I. Gabay, M. Tur, A. Boag, H. Kleinman, S. Zach, Z. Zalevsky, “Mono-detection spatially super resolved microwave imaging for RADAR applications”,  Optics Communications, vol. 285, pp. 2519-2524, 2012.

[86]    E. Chernokozhin and A. Boag, “Method of Generalized Debye Sources for the Analysis of Electromagnetic Scattering by Perfectly Conducting Bodies with Piecewise Smooth Boundaries,”  IEEE Trans. Antennas and Propagation, vol. 61, no. 4(2), pp. 2108-2115, Apr. 2013.

[87]    Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load-sensitivity in wideband infrared dual-Vivaldi nanoantennas,”  Optics Letters, vol. 38, no. 2, pp. 205–207, 2013.

[88]    G. Cohen, E. Halpern, S. U. Nanayakkara, J. M. Luther, C. Held, R. Bennewitz A. Boag, and Y. Rosenwaks, “Reconstruction of Surface Potential from Kelvin probe force microscopy images”,  Nanotechnology, vol. 24, 295702, 2013, doi:10.1088/0957-4484/24/29/295702.

[89]    G. Y. Slepyan and A. Boag, “Quantum non-reciprocity of nanoscale antenna arrays in timed Dicke states”,  Physical Review Letters, vol. 111, 023602, 11 July, 2013.

[90]    E. Chernokozhin and A. Boag, “Grid Metastructures for Ultrabroadband Acoustic Cloaking,”  AIP Advances, vol. 3, no. 9, 092133, 30 Sept., 2013; http://dx.doi.org/10.1063/1.4824322.

[91]    P. Poullet and A. Boag, “Equation-Based Interpolation and Incremental Unknowns for Solving the Three-dimensional Helmholtz Equation,”  Applied Mathematics and Computation. vol. 232C, pp. 1200-1208, Feb., 2014; doi: 10.1016/j.amc.2014.01.084.

[92]    Y. Brick, V. Lomakin, and A. Boag, “Fast Green's Function Evaluation for Sources and Observers near Smooth Convex Bodies,”  IEEE Trans. Antennas and Propagation, vol. 62, no. 6, pp. 3374-3378, June. 2014.

[93]    Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband Wide-Angle Holography Using Patch-Dipole Nano-antenna Reflectarrays,”  Nano Letters, March 19, 2014 (Letter), doi: 10.1021/nl5001696.

[94]    Y. Brick, V. Lomakin, and A. Boag, “Fast Direct Solver for Essentially Convex Scatterers Using Multilevel Non-uniform Grids,”  IEEE Trans. Antennas and Propagation, vol. 62, no. 8, pp. 4314-4324, Aug. 2014, doi: 10.1109/TAP.2014.2327651.

[95]    A. Gendelman, Y. Brick, and A. Boag, “Multilevel Physical Optics Algorithm for Near Field Scattering,”  IEEE Trans. Antennas and Propagation, vol. 62, no. 8, pp. 4325-4335, Aug. 2014, doi: 10.1109/TAP.2014.2327648.

[96]    M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,”  ACS Photonics, vol. 2, no. 5, pp. 615-621, April 13, 2015, doi: 10.1021/acsphotonics.5b00091

[97]    M. Zuzovski, A. Boag, and A. Natan, “An Auxiliary Grid Method for the Calculation of Electrostatic Terms in Density Functional Theory on a Real-Space Grid,”  Physical Chemistry Chemical Physics, vol. 17, pp. 31550-31557, 2015, doi: 10.1039/c5cp01090j.

[98]    G. Y. Slepyan, A. Boag, V. Mordachev, E. Sinkevich, S. Maksimenko, P. Kuzhir, G. Miano, M. Portnoi, and A. Maffucci, “Nanoscale Electromagnetic Compatibility: Quantum Coupling and Matching in Nanocircuits,”  IEEE Transactions on Electromagnetic Compatibility, vol. 57, no. 6, pp. 1645-1654, Dec. 2015, doi: 10.1109/TEMC.2015.2460678.

[99]    M. Roudstein, Y. Brick, and A. Boag, “Multilevel Physical Optics Algorithm for Near-Field Double-Bounce Scattering,”  IEEE Trans. Antennas and Propagation, vol. 63, no. 11, pp. 5015-5025, Nov. 2015, doi: 10.1109/TAP.2015.2481491.

[100]  E. Chernokozhin, Y. Brick, and A. Boag, “A Fast and Stable Solver for Acoustic Scattering Problems Based on Nonuniform Grid Approach,”  The Journal of the Acoustical Society of America, vol. 139, no. 1, pp. 472–480, Jan. 2016; http://dx.doi.org/10.1121/1.4939890.

[101]  A. Gergel, Y. Brick, and A. Boag, “Fast Antenna Diagnosis Algorithm Using Oblate Spheroidal Non-Uniform Grids,”  IEEE Trans. Antennas and Propagation, vol. 64, no. 10, pp. 4197-4207, Oct. 2016, doi: 10.1109/TAP.2016.2597644.

[102]  G. Y. Slepyan, A. Boag, V. Mordachev, E. Sinkevich, S. Maksimenko, P. Kuzhir, G. Miano, M. Portnoi, and A. Maffucci, “Anomalous electromagnetic coupling via entanglement at nanoscale,”  New Journal of Physics, vol. 19, p. 023014, Feb. 2017, doi: 10.1088/1367-2630/19/2/023014.

[103]  D. Gabay, A. Boag, and A. Natan, “Optimizing kernel methods for Poisson integrals on a uniform grid,” Computer Physics Communications, vol. 215, pp. 1-6, 2017, doi:. 10.1016/j.cpc.2017.01.016.

[104]  G. Miano, C. Forestiere, A. Boag, G. Slepyan, and A. Maffucci, “On small signal equivalent circuit models for quantum dots,” International Journal of Circuit Theory and Applications, Special Issue on “Quantum Circuits,” vol. 45, pp. 935-950, 2017, doi: 10.1002/cta.2330.

[105]  D. Gabay, X. Wang, V. Lomakin A. Boag, M. Jain, and A. Natan, “Size dependent electronic properties of silicon quantum dots - an analysis with hybrid, screened hybrid and local density functional theory,” Computer Physics Communications, vol. 221, pp. 95-101, 2017, doi:. 10.1016/j.cpc.2017.08.005.

[106]  M. V. Shuba, A. V. Melnikov, P. P. Kuzhir, S. A. Maksimenko, G. Y. Slepyan, A. Boag, A. Mosca Conte, O. Pulci, S. Bellucci, “Integral equation technique for scatterers with mesoscopic insertions: Application to a carbon nanotube,”  Physical Review B, vol. 96, p. 205414, 2017.

[107]  I. Gershenzon, Y. Brick, and A. Boag, “Shadow Radiation Iterative Physical Optics Method for High Frequency Scattering,”  IEEE Trans. Antennas and Propagation, vol. 66, no. 2, pp. 871-883, Feb. 2018, doi: 10.1109/TAP.2017.2784439.

[108]  A. Mikhalychev, D. Mogilevtsev, G. Y. Slepyan, I. Karuseichyk, G. Buchs, D. L. Boiko, and A. Boag, “Synthesis of Quantum Antennas for Shaping Field Correlations,”  Physical Review Applied, vol. 9, p. 024021, Feb. 2018.

[109]  M. Zelig, E. Heyman, and A. Boag, “A Fast Algorithm for the Analysis of Scattering by Elongated Cavities,” Journal of Electromagnetic Waves and Applications, vol. 32, no. 13, pp. 1675-1696, 6 May 2018, https://doi.org/10.1080/09205071.2018.1465481.

[110]  D. Filonov, A. Shmidt, A. Boag, and P. Ginzburg, “Artificial localized magnon resonances in subwavelength meta-particles,” Applied Physics Letters, vol. 113, no. 12, 123505, 2018; https://doi.org/10.1063/1.5047445 .

[111]  Y. Blau, M. Eitan, V. Egorov, A. Boag, Y. Hanein, and J. Scheuer, “In situ Real-time Beam Monitoring with Dielectric Meta-holograms,”  Optics Express, vol. 26, no. 22, pp. 28469-28483, 29 Oct. 2018; https://doi.org/10.1364/OE.26.028469 .

[112]  D. Filonov, S. Kolen, A. Shmidt, Y. Shacham-Diamand, A. Boag, and P. Ginzburg, “Volumetric 3D-Printed Antennas, Manufactured via Selective Polymer Metallization,” Phys. Status Solidi RRL, 1800668, vol. 113, no. 12, 2019; https://doi.org/10.1002/pssr.201800668.

[113]  D. Filonov, H. Barhom, A. Shmidt, Y. Sverdlov, Y. Shacham-Diamand, A. Boag, and P. Ginzburg, “Flexible metalized tubes for electromagnetic waveguiding,” J. of Quantitative Spectroscopy and Radiative Transfer, vol. 232, pp. 152–155, 2019; https://doi.org/10.1016/j.jqsrt.2019.05.008.

[114]  I. Peshko, D. Mogilevtsev, I. Karuseichyk, A. Mikhalychev, A. P. Nizovtsev, G. Ya. Slepyan, and A. Boag, “Quantum noise radar: superresolution with quantum antennas by accessing spatiotemporal correlations,”  Optics Express, vol. 27, no. 20/30, pp. 29217-29231, 26 Sept. 2019; https://doi.org/10.1364/OE.27.029217 .

[115]  A. Sharshevsky, Y. Brick, and A. Boag, “Direct Solution of Scattering Problems Using Generalized Source Integral Equations,”  IEEE Trans. Antennas and Propagation, vol. 68, no. 7, pp. 5512-5523, July 2020, doi: 10.1109/TAP.2020.2975549.

[116]  Y. Blau, O. Bar-On, Y. Hanein, A. Boag, and J. Scheuer, “Meta-hologram-based authentication scheme employing a speckle pattern fingerprint,”  Optics Express, vol. 28, no. 6, pp. 8924-8936, 16 March 2020; https://doi.org/10.1364/OE.388233.

[117]  D. Gabay, A. Yilmaz, V. Lomakin, A. Boag, and A. Natan, “A Lorenz gauge formulation for TDDFT,”  Physical Review B, vol. 101, p. 235101, 2020.

[118]  Z. Xue, Y. M. Wu, W. C. Chew, Y.-Q. Jin, and A. Boag, "The Multilevel Fast Physical Optics Method for Calculating High Frequency Scattered Fields," Progress In Electromagnetics Research, vol. 169, pp. 1-15, 2020; doi:10.2528/PIER20071203.

[119]  E. Chernokozhin, A. Tsinovoy, and A. Boag, “Scattering by thin shells in fluids: fast solver and experimental validation,”  The Journal of the Acoustical Society of America Express Letters, vol. 1, no.1, 016002, 2021; https://doi.org/10.1121/10.0002999.

[120]  A. Gaibel and A. Boag, “Backprojection Imaging of Moving Objects,”  IEEE Trans. Antennas and Propagation, vol. 69, no. 8, pp. 4944-4954, Aug. 2021, doi: 10.1109/TAP.2020.3045500.

[121]  D. Gabay, A. Yilmaz, A. Boag, and A. Natan, “Modeling Electromagnetic Wave Phenomena in Large Quantum Systems,”  IEEE Antennas and Propagation Magazine, vol. 63, no. 2, pp. 29-39, Apr. 2021; DOI: 10.1109/MAP.2021.3054301.

[122]  A. V. Melnikov, P. P. Kuzhir, S. A. Maksimenko, G. Y. Slepyan, A. Boag, O. Pulci, I. A. Shelykh, and M. V. Shuba,  “Scattering of the electromagnetic wave by two crossing finite-length metallic single-walled carbon nanotubes,”  Physical Review B, vol. 103(7), p. 075438(13), 2021; DOI: 10.1103/PhysRevB.103.075438.

[123]  W. He, Y. He, L. Zhang, S.-W. Wong, W. Li and A. Boag, “A Low-Profile Circularly Polarized Conical-Beam Antenna with Wide Overlap Bandwidth,”  Wireless Communications and Mobile Computing, vol. 2021, Art. ID 6648887, 2021, https://doi.org/10.1155/2021/6648887.

[124]  S. Kosulnikov, D. Filonov, A. Boag, and P. Ginzburg, “Volumetric metamaterials versus impedance surfaces in scattering applications,” Scientific Reports, vol. 11, Article: 9571, 2021.

[125]   W. He, Y. He, S.-W. Wong, L. Zhang, W. Li, H. Cui, and A. Boag, “A low-profile ultra-wideband circularly polarized antenna array with metasurface,”  International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, no. 12,  e22874, Dec. 2021, DOI: 10.1002/mmce.22874.

[126]   D. Qubty, S. Schreiber, V. Rubovitch, A. Boag, and C. G. Pick, “Cellphone electromagnetic radiation mixed effects on brain functions of traumatic brain injured mice,”  Neurotrauma Reports, vol. 2.1, pp. 381-390. DOI: 10.1089/neur.2021.0009.

[127]  Y. Hollander and A. Boag, “Adaptive Multilevel Non-uniform Grid Algorithm for the Accelerated Analysis of Composite Metallic-Dielectric Radomes,”  IEEE Trans. Antennas and Propagation, vol. 69, no. 12, pp. 8593-8602, Dec. 2021, doi: 10.1109/TAP.2021.3090504.

[128]  G. Slepyan, S. Vlasenko, D. Mogilevtsev, and A. Boag, “Quantum Radars and Lidars: Concepts, realizations, and perspectives,”  IEEE Antennas and Propagation Magazine, vol. 64, no. 1, pp. 16-26, Feb. 2022; doi: 10.1109/MAP.2021.3089994.

[129]  A. Saleem, H. Cui, Y. He, and A. Boag, “Channel Propagation Characteristics for Massive MIMO Systems in Tunnel Environment,”  IEEE Antennas and Propagation Magazine, vol. 65, no. 3, pp. 126-142, June 2022; DOI: 10.1109/MAP.2022.3162807.

[130]  Y. Blau, T. Gilad, Y. Hanein, A. Boag, and J. Scheuer, “High efficiency coupling to metal-insulator-metal plasmonic waveguides,”  Optics Express, vol. 30, no. 8, pp. 13757-13764, 11 Apr. 2022; https://doi.org/10.1364/OE.453240.

[131]  G. Slepyan, D. Mogilevtsev, I. Levie, and A. Boag, “Modeling of Multimodal Scattering by Conducting Bodies in Quantum Optics: the Method of Characteristic Modes,”  Physical Review Applied, vol. 18, no. 1, pp. 014024(16), 2022; doi: 10.1103/PhysRevApplied.18.014024.

[132]  G. Slepyan and A. Boag, “Super-operator Linear Equations and their Applications to Quantum Antennas and Quantum Light Scattering,”  Applied Sciences, vol. 12, no. 17, pp. 8498(21), 2022; doi: 10.3390/app12178498.

[133]  Y. Saifullah, Y. He, A. Boag, G.-M. Yang, F. Xu, “Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications,”  Advanced Science, vol. 9, p. 2203747 (pp. 35), 2022; DOI: 10.1002/advs.202203747.

[134]  D. Zvulun, Y. Brick, and A. Boag, “A Generalized Source Integral Equation for Enhanced Compression in Three Dimensions,”  IEEE Trans. Antennas and Propagation.

[135]  S. Vlasenko, A. Mikhalychev, S. Pakniyat, G. Hanson, A. Boag, G. Slepyan, and D. Mogilevtsev, “Classical Emulation of Bright Quantum States,” Adv. Quantum Technol., vol. 6, no. 8, pp. 2300060 (16), 2023; doi: 10.1002/qute.20230006.

[136]  W. He, Y. He, L. Zhang, J. Hong, H. Cui, A. Boag, “A Compact Ultra-Wideband Circularly Polarized Antenna Array for Vehicular Communications,” China Communications, vol. 20, no. 6, pp. 310-320, June 2023; doi: 10.23919/JCC.fa.2021-0579.202306.

bottom of page